• Users Online: 72
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2019  |  Volume : 10  |  Issue : 2  |  Page : 117-123

Radiographic assessment of protective aprons and dose simulation to personnel

1 Department of Radiology, Medical Physics Unit, Federal Medical Centre, Asaba, Nigeria
2 Department of Radiation Biology, Radiotherapy and Radiodiagnosis, College of Medicine, University of Lagos, Lagos, Nigeria

Correspondence Address:
Mr. Akintayo Daniel Omojola
Department of Radiology, Medical Physics Unit, Federal Medical Centre, Asaba
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jrcr.jrcr_14_19

Rights and Permissions

Background: Studies have shown that protective aprons are carelessly handled after working hours. This, in turn, leads to crack, tear, hole, and creases on the apron, which may lead to distortion in the attenuating property and hence reduction in efficiency. Aim and Objective: The aim of the study was to carry out the radiographic assessment of four protective aprons (denoted A–D), to check for tear, crack, or pressure marks and to simulate what the equivalent dose rate, dose/procedure, percentage absorbance, and transmission factor (TF) would be if a physician is to perform hysterosalpingogram (HSG), for which he/she will be averagely exposed twice/procedure. Materials and Methods: This study used a functional mobile X-ray unit, four protective aprons, a measuring tape, an electronic dosimeter and a locally designed phantom as materials. The first phase involved the radiographic exposure of the protective aprons. The second phase involved the use of a plastic phantom to produce scatter, a wooden T-stand to hold the apron, which was positioned 1.6 m diagonally from the X-ray collimator. This position was assumed to be where a physician would stand during the procedure. Results: Two out of the four aprons were defective (50%). One out of the four aprons was rejected because it exceeded the 670 mm[2] criteria for acceptance. The mean estimated dose/procedure was 65.69–347.56 μSv, and the estimated mean dose per year for 0.25, 0.35, and 0.50 mm protective aprons was 35,592, 9689, and 7900 μSv/year, respectively. TF for 0.25, 0.35, and 0.50 mm protective aprons was 20.4–23.2, 5.3–6.9, and 3.7%–6.3%, respectively. Absorbance for 0.35 and 0.50 mm protective aprons was ≥94%. There was no statistically significant difference in mean percentage absorbance for 0.25 mm protective aprons, compared to other studies (P = 0.981). Conclusion: Estimated equivalent skin dose per year to a physician with 0.25, 0.35, and 0.50 mm protective aprons was below 500 mSv/year, and the mean percentage absorbance for 0.25 mm protective aprons was seen to be below 90%.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded515    
    Comments [Add]    

Recommend this journal