PTW
  • Users Online: 419
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 4  |  Page : 180-185

Simulated three-dimensional printing printed polyamide based PA2200 immovable device for cancer patients undergoing radiotherapy


1 Department of Radiation Oncology, Narayana Multispecialty Hospital; Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
2 Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
3 Division of Molecular Biology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
4 Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India

Correspondence Address:
Dr. Shanmukhappa B Kaginelli
Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_28_21

Rights and Permissions

Background: Radiotherapy is one of the most effective treatments for cancer. However, delivering an optimal dosage of radiation to the patients is always challenging due to the movements of the patient during treatment. Immobilization devices are typically used to minimize patient movement. Aims: The current work has been carried out to investigate the effectiveness of Three-dimensional printing (3D) printing to create patient-specific immobilization devices in comparison to traditional devices. Earlier studies have reported the advantages of 3D printed materials in the form of phantoms included improved patient experience and comfort over traditional methods. Further, high levels of accuracy between immobilizer and patient, reproducibility, and similar beam attenuation properties were better achieved compared to conventional or thermoformed immobilizers. Methods: The additive manufacturing process, however, is considered time-consuming as it requires time to print the desired shape. In the current study, polyamide-based PA 2200 which is biocompatible was used as source material for printing the customized Immobilize devices for radiotherapy. Results: Computer-aided designing (CAD) was used to design following the computer tomography scan of patients. The design was fed to the 3D printer for further processing. Conclusions: The mechanical properties of materials are important to receive the geometrical requirement that fits every patient. We used PA 2200, which is more biocompatible compared to other materials to produce phantoms using the system-generated design of the patient geometry. Further, phantoms produced did not show much deviation in radio fractionation when compared to the thermoplastic molds.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed818    
    Printed31    
    Emailed0    
    PDF Downloaded75    
    Comments [Add]    

Recommend this journal