PTW
  • Users Online: 239
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 1  |  Page : 12-18

Evaluation of dose–Volume-based image-guided high-dose-rate brachytherapy in carcinoma uterine cervix: A prospective study


Department of Radiation Oncology, Gandhi Medical College, Bhopal, Madhya Pradesh, India

Correspondence Address:
Dr. Veenita Yogi
Department of Radiation Oncology, Gandhi Medical College, Bhopal, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_39_21

Rights and Permissions

Background: In recent few decades, the evolution in imaging technology, especially computed tomography (CT) and magnetic resonance imaging, results in widespread availability and its use in high-dose-rate (HDR) intracavitary brachytherapy (ICBT) applications. Aim: The present study was aimed to analyze the cumulative dose–volume histogram of the tumor and organs at risk (OARs) in three-dimensional (3D) CT image-based brachytherapy planning and clinical outcomes of the treated patients. Materials and Methods: This prospective observational study included 40 patients with carcinoma cervix. After external beam radiotherapy (EBRT), a dose of 6 Gy per fraction of HDR ICBT in four fractions with a total dose to point “A” approximately 80–85 Gy was given. For planning, the tumor volumes (high-risk clinical target volume [HR-CTV]) and volume of OARs (bladder, rectum, and sigmoid colon) were contoured on each CT slice. The dose–volume parameters, i.e., minimum dose received to 90% and 100% by HR-CTV volume (D90 and D100) for target and the maximum dose received by minimum volume of 2CC (D2CC) for OARs, were calculated and assessed for clinical response in patients. Results: The mean D2CC dose was 18.24 ± 0.93 Gy, 16.44 ± 1.11 Gy, and 16.37 ± 0.67 Gy for bladder, rectum, and sigmoid colon, respectively. The combined (EBRT and HDR ICBT) mean equieffective dose in 2 Gy per fraction (EQD2) dose for bladder was 76.71 ± 2.05 Gy, for rectum was 72.82 ± 2.58 Gy, and for sigmoid colon was 72.71 ± 1.41 Gy, and its comparison with baseline values showing P < 0.01 for bladder, rectum, and sigmoid colon was considered statistically significant. The mean EQD2 dose of HR-CTV D90 was 151 ± 27.3 Gy. Patients who had received HR-CTV D90 of >90 Gy compared with <90 Gy had exceptionally better local control and complete response. Conclusion: The present study suggested that CT is a favorable modality for treatment planning in cervical cancer with limited resources setup in terms of improved tumor coverage, lesser toxicity, confirmation of applicator placement, and accounting dose to OARs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2532    
    Printed133    
    Emailed0    
    PDF Downloaded194    
    Comments [Add]    

Recommend this journal