PTW
  • Users Online: 6559
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 1  |  Page : 1-7

The effect of prophylactic cranial irradiation on brain 18F-fluorodeoxyglucose uptake in small cell lung cancer in the metabolic imaging era


1 Department of Nuclear Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
2 Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey

Correspondence Address:
Dr. Sibel Goksel
Department of Nuclear Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrcr.jrcr_60_21

Rights and Permissions

Introduction: Prophylactic cranial irradiation (PCI) increases survival in patients with small-cell lung cancer. Although the underlying pathophysiology is not fully understood, it has been associated with posttreatment neurocognitive impairment. Our study aims to show the brain's glucose metabolism change after PCI with 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Materials and Methods: A total of 17 patients who underwent PET/CT before and after PCI were evaluated retrospectively. 18F-FDG PET images of the brain before and after PCI were compared visually and semi-quantitatively using MI-Neurology Software. The brain was automatically segmented into eleven regions by this software. The mean standard uptake values (SUVmean) of all brain regions were measured within the automatically drawn region of interest area, and standard uptake value ratio (SUVR) values were found for each region by taking the brainstem SUVmean value as a reference. SUVR values were calculated from PET/CT scannings taken before and after PCI for each patient. The P < 0.05 value was considered statistically significant in comparisons. Results: We found a significant decrease in 18F-FDG uptake and glucose metabolism of the brain after PCI when compared with PET/CT before PCI in all brain regions identified according to the Combined-AAL atlas (all P < 0.001). Similarly, a significant decrease was found in brain 18F-FDG uptake on PET/CT taken after PCI in the brainstem used to calculate SUVR (P = 0.039). Conclusion: 18F-FDG PET/CT neuroimaging may be a new metabolic imaging technique for diagnosing radiation-induced cognitive impairment in the metabolic imaging era.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed585    
    Printed38    
    Emailed0    
    PDF Downloaded87    
    Comments [Add]    

Recommend this journal